Descoberto um universo multidimensional em redes cerebrais

A imagem tenta ilustrar algo que não pode ser visualizado — um Universo de estruturas e espaços multidimensionais. Acima, uma cópia digital de uma parte do neocórtex, a parte mais evoluída do cérebro. Abaixo, formas de tamanhos e geometrias diferentes, na tentativa de representar estruturas que variam de 1 dimensão a 7 dimensões e além. O “buraco negro” no meio é usado para simbolizar um complexo de espaços ou cavidades multidimensionais. (Créditos da imagem: Blue Brain Project).

Para a maioria das pessoas, é necessário um pouco de imaginação entender o mundo em quatro dimensões, mas um estudo descobriu estruturas no cérebro com até onze dimensões — trabalho inovador que começa a revelar os segredos arquitetônicos mais profundos do cérebro.

Usando a topologia algébrica de uma maneira que nunca foi usada antes na neurociência, uma equipe do Blue Brain Project descobriu um Universo de estruturas e espaços geométricos multidimensionais nas redes do cérebro.

A pesquisa, publicada na revista Frontiers in Computational Neuroscience, mostra que essas estruturas surgem quando um grupo de neurônios forma uma camarilha: Cada neurônio se conecta a todos os outros neurônios do grupo de uma maneira muito específica que gera um objeto geométrico preciso. Quanto mais neurônios houver em uma camarilha, maior será a dimensão do objeto geométrico.

“Encontramos um mundo que nunca imaginamos”, disse o neurocientista Henry Markram, diretor do Blue Brain Project e professor da Escola Politécnica Federal de Lausan (EPFL, na sigla em inglês) em Lausanne, na Suíça. “Existem dezenas de milhões desses objetos, mesmo em uma pequena parte do cérebro, através de sete dimensões. Em algumas redes, encontramos estruturas com até onze dimensões”, acrescentou o professor.

Markram sugeriu que a descoberta pode explicar por que tem sido tão difícil entender o cérebro: “A matemática geralmente aplicada às redes de estudo não pode detectar as estruturas e os espaços de alta dimensão que agora vemos claramente”.


Se os mundos 4D exigem muito da nossa imaginação, os mundos com 5, 6 ou mais dimensões são complexos demais para a maioria de nós compreender. É aqui que entra a topologia algébrica: um ramo da matemática que pode descrever sistemas com qualquer número de dimensões. Os matemáticos que trouxeram a topologia algébrica para o estudo das redes cerebrais no Blue Brain Project foram Kathryn Hess, da EPFL, e Ran Levi, da Universidade de Aberdeen.

“A topologia algébrica é como um telescópio e um microscópio ao mesmo tempo. Ele pode ampliar as redes para encontrar estruturas ocultas — as árvores na floresta — e ver os espaços vazios — as clareiras — tudo ao mesmo tempo”, explica Hess.

Em 2015, o Blue Brain publicou a primeira cópia digital de um pedaço do neocórtex — a parte mais evoluída do cérebro e a sede de nossas sensações, ações e consciência. Na pesquisa mais recente, usando topologia algébrica, vários testes foram realizados no tecido cerebral virtual para mostrar que as estruturas cerebrais multidimensionais descobertas nunca poderiam ser produzidas por acaso. 

Experimentos foram então realizados em tecido cerebral real no laboratório úmido do Blue Brain em Lausanne, confirmando que as descobertas anteriores no tecido virtual são biologicamente relevantes e também sugeriram que o cérebro se religue constantemente durante o desenvolvimento para construir uma rede com tantas estruturas de alta dimensão quanto possível.

Quando os pesquisadores apresentaram um estímulo no tecido cerebral virtual, grupos de dimensões progressivamente mais altas se reuniram momentaneamente para incluir orifícios de alta dimensão, que os pesquisadores chamam de cavidades. “O surgimento de cavidades de alta dimensão quando o cérebro está processando informações significa que os neurônios da rede reagem a estímulos de maneira extremamente organizada”, explica Levi. 

“É como se o cérebro reagisse a um estímulo construindo e destruindo uma torre de blocos multidimensionais, começando com barras (1D), depois pranchas (2D), depois cubos (3D) e, em seguida, geometrias mais complexas com 4D, 5D, etc. A progressão da atividade pelo cérebro se assemelha a um castelo de areia multidimensional que se materializa na areia e depois se desintegra”, concluiu.

A grande questão que esses pesquisadores estão perguntando agora é se a complexidade das tarefas que podemos executar depende da complexidade dos “castelos de areia” multidimensionais que o cérebro pode construir. A neurociência também tem se esforçado para descobrir onde o cérebro armazena suas memórias. “Elas podem estar escondidas em ‘cavidades de alta dimensão’”, especulou Markram.

Teoria quântica que diz que duas realidades podem coexistir é comprovada em experimento


A física quântica, como sabemos, é um reino totalmente diferente e estranho da física. Lá, coisas estranhas e inimagináveis no nível normal da física acontecem, como o entrelaçamento quântico e outros fenômenos. E por incrível que pareça, as coisas acabaram de ficar mais estranhas. Um experimento acaba de comprovar uma questão que tem intrigado os cientistas que estudam este campo da física há anos: será que duas versões da realidade podem existir ao mesmo tempo? Os físicos dizem que a resposta para essa pergunta é afirmativa – pelo menos no mundo quântico.

O experimento colocou em prática uma teoria: dois indivíduos observando o mesmo fóton poderiam chegar a diferentes conclusões sobre o estado desse fóton – e, no entanto, ambas as suas observações estariam corretas. Pela primeira vez, os cientistas replicaram as condições descritas neste experimento mental. Seus resultados, publicados em 13 de fevereiro, confirmaram que, mesmo quando os observadores descreviam estados diferentes no mesmo fóton, as duas realidades conflitantes poderiam ser ambas verdadeiras.


“Você pode verificar as duas”, confirma Martin Ringbauer, um dos co-autores do estudo e pesquisador de pós-doutorado do Departamento de Física Experimental da Universidade de Innsbrück, na Áustria.

Mas Como Isso é Possível?

A ideia desconcertante de duas realidades coexistindo é de Eugene Wigner, vencedor do Prêmio Nobel de Física em 1963. Em 1961, Wigner introduziu um experimento mental que ficou conhecido como “amigo de Wigner”. Começa com um fóton – uma partícula de luz. Quando um observador em um laboratório isolado mede o fóton, ele descobre que a polarização da partícula – o eixo no qual ela gira – é vertical ou horizontal. Entretanto, antes que o fóton seja medido, ele exibe as duas polarizações de uma só vez, conforme ditado pelas leis da mecânica quântica; ele existe em uma “superposição” de dois estados possíveis.

Uma vez que a pessoa no laboratório mede o fóton, a partícula assume uma polarização fixa. Mas para alguém de fora daquele laboratório fechado que não conhece o resultado das medições, o fóton não medido ainda está em estado de superposição. A observação desta pessoa de fora e, portanto, sua realidade, divergem da realidade da pessoa no laboratório que mediu o fóton. No entanto, nenhuma dessas observações conflitantes é considerada errada, de acordo com a mecânica quântica.

Estados Alterados

Durante décadas, esta proposta bizarra de Wigner foi apenas uma interessante experiência mental. Mas nos últimos anos, avanços importantes na física finalmente permitiram que especialistas colocassem a proposta de Wigner à prova. “Os avanços teóricos foram necessários para formular o problema de uma maneira testável. Então, o lado experimental precisou de desenvolvimentos no controle de sistemas quânticos para implementar algo assim”, explica Ringbauer ao portal Live Science.

Ringbauer e seus colegas testaram a ideia original de Wigner com um experimento ainda mais rigoroso que duplicou o cenário. Eles designaram dois “laboratórios” onde os experimentos aconteceriam e introduziram dois pares de fótons emaranhados, o que significa que seus destinos estavam interligados, de modo que saber o estado de um automaticamente informa o estado do outro. Os fótons da configuração eram reais. Quatro “pessoas” no cenário, chamadas de “Alice”, “Bob” e um “amigo” de cada um, não eram reais, mas representavam observadores do experimento.

Os dois amigos de Alice e Bob, que estavam localizados “dentro” de cada um dos laboratórios, mediam um fóton em um par entrelaçado. Isso quebrou o emaranhamento e colapsou a superposição, o que significa que o fóton medido existia em um estado definido de polarização. Eles gravaram os resultados em memória quântica – copiados na polarização do segundo fóton.

Alice e Bob, que estavam “fora” dos laboratórios fechados, foram então apresentados a duas escolhas para realizar suas próprias observações. Eles podiam medir os resultados de seus amigos armazenados na memória quântica e, assim, chegar às mesmas conclusões sobre os fótons polarizados, mas também poderiam conduzir sua própria experiência entre os fótons emaranhados.


Neste experimento, conhecido como experimento de interferência, se os fótons atuam como ondas e ainda existem em uma superposição de estados, Alice e Bob veriam um padrão característico de franjas claras e escuras, onde os picos e vales das ondas de luz adicionam ou cancelam uma à outra. Se as partículas já tivessem “escolhido” seu estado, eles veriam um padrão diferente do que se elas não tivessem. Wigner havia proposto previamente que isso revelaria que os fótons ainda estavam em um estado emaranhado.

Os autores do novo estudo descobriram que, mesmo em seu cenário duplicado, os resultados descritos por Wigner eram válidos. Alice e Bob puderam chegar a conclusões sobre os fótons que eram corretas e prováveis e que ainda diferiam das observações de seus amigos – que também eram corretas e prováveis, de acordo com o estudo.

Outras Regras

A mecânica quântica descreve como o mundo funciona em uma escala tão pequena que as regras normais da física não se aplicam mais. Segundo Ringbauer, especialistas que estudam o campo já ofereceram inúmeras interpretações do que isso significa durante várias décadas. No entanto, se as medidas em si não são absolutas – como essas novas descobertas sugerem – isso desafia o próprio significado da mecânica quântica.

“Parece que, em contraste com a física clássica, os resultados das medições não podem ser considerados verdade absoluta, mas devem ser entendidos em relação ao observador que realizou a medição. As histórias que contamos sobre mecânica quântica têm que se adaptar a isso”, diz ele ao Live Science. “O método científico baseia-se em fatos, estabelecidos através de medições repetidas e acordados universalmente, independentemente de quem os observou.

Na mecânica quântica, a objetividade das observações não é tão clara”, diz Maximiliano Proietti, outro dos co-autores do estudo, no artigo publicado no jornal pré-impresso AirXiv.

É como se a máxima “ver para crer” não fosse suficiente para este bizarro e sensacional campo da física.